Section 8.2: The Reciprocal Function

Functions that model inverse variation, \(y = \frac{k}{x} \), belong to a family of functions, called the reciprocal function \(f(x) = \frac{1}{x} \).

Graphing the reciprocal function...

Graph the following function, using transformations of the parent reciprocal function. Be sure to state the domain and range of each graph as well.
Graph the following function, using transformations of the parent reciprocal function. Be sure to state the domain and range of each graph as well.

Graph the following function, using transformations of the parent reciprocal function. Be sure to state the domain and range of each graph as well.

\[y = \frac{1}{x + 2} - 5 \]

```
\begin{array}{c|c|c}
 x & y & \text{domain} \\
-3 & -\infty & (\infty, 0) \cup (0, \infty) \\
-2 & \text{undefined} & \\
-1 & -4 & \\
\end{array}
```

\[y \neq 5 \]

```
\begin{array}{c|c|c}
 x & y & \text{domain} \\
-\infty & -5 & (-\infty, -2) \cup (-2, \infty) \\
\end{array}
```
Graph the following function, using transformations of the parent reciprocal function. Be sure to state the domain and range of each graph as well.

\[y = \frac{5}{x} \]

- Vertical Asymptote: \(x = 0 \)
- Horizontal Asymptote: \(y = 0 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-5</td>
</tr>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

\(x \neq 0 \)

Graph the following function, using transformations of the parent reciprocal function. Be sure to state the domain and range of each graph as well.

\[y = \frac{-1}{x} + 0 \]

- Vertical Asymptote: \(x = 0 \)
- Horizontal Asymptote: \(y = 0 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

\(x \neq 0 \)
Graph the following function, using transformations of the parent reciprocal function. Be sure to state the domain and range of each graph as well.

\[y = \frac{3}{x+1} + 2 \]

Write an equation for the translation of that has the given asymptotes.

- \(x = 4 \) and \(y = 2 \)
 \[y = \frac{3}{x-4} + 2 \]

- \(x = -3 \) and \(y = 5 \)
 \[y = \frac{3}{x+3} + 5 \]

- \(x = 3 \) and \(y = -1 \)
 \[y = \frac{3}{x-3} - 1 \]
Write the function rule for each of the given graphs.

\[y = \frac{k}{x+3} + 4 \]

(1) \(y = \frac{2}{x+3} + 4 \)

(2) \(y = \frac{3}{x} + 4 \)

(3) \(y = \frac{k}{4} + 4 \)

(4) \(y = \frac{2}{3} + 4 \)

(5) \(k = \frac{2}{3} \)